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Abstract

Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For
example, many community detection methods depend upon finding common neighbors of two related
entities. We consider Cohen’s simple and elegant solution for listing triangles: give each node a
“bucket.” Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently.
Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete
that triangle. Cohen presents an informal argument that his algorithm should run well on real
graphs. We formalize this argument by providing an analysis for the expected running time on a
class of random graphs, including power law graphs.

We consider a rigorously defined method for generating a random simple graph, the erased
configuration model (ECM). In the ECM each node draws a degree independently from a marginal
degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal
degree distribution has a finite second moment, it follows immediately that Cohen’s algorithm runs
in expected linear time. Furthermore, it can still run in expected linear time even when the degree
distribution has such a heavy tail that the second moment is not finite. We prove that Cohen’s
algorithm runs in expected linear time when the marginal degree distribution has finite 4

3 moment
and no vertex has degree larger than

√
n. In fact we give the precise asymptotic value of the

expected number of edge pairs per bucket. A finite 4
3 moment is required; if it is unbounded, then

so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4
3

moment when its exponent α is more than 7
3 . Thus for this class of power law graphs, with degree

at most
√
n, Cohen’s algorithm runs in expected linear time. This is precisely the value of α for

which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant
for the degree distribution of the World-Wide Web.
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1 Introduction

Identifying triangles (3-cycles) in graphs is a kernel operation for social network analysis. Listing
triangles can be more involved that finding one triangle or counting triangles [17–19]. Latapy [10]
surveys the state of the art in all three variants. Tsourakakis [17] more specifically surveys results
in counting or estimating the number of triangles. In this paper, we focus on listing triangles.

Although counting triangles is a fundamental problem in social network analysis [6, 7], we have
found relatively few direct applications in the literature. Fudos and Hoffman [9] describe a graph-
based approach for solving systems of geometric constraints. Their algorithm requires finding and
handling each triangle in a graph. They claim applications of this geometric contraint processing
in computer-aided design, stereochemistry, kinematic analysis of robots and other mechanisms, and
robot motion planning. These graphs are sparse. However, we have little reason to believe they
would be well represented by a class of random graphs whose degree distribution has a finite 43
moment. We are primarily interested in enumerating triangles because it is a fundamental step in
detecting an edge support measure in a community detection algorithm we are actively using for
social network analysis at Sandia National Laboratories [1].

Latapy gives several algorithms for listing triangles that minimize the constant in their Θ(m)
space complexity, where m is the number of edges in the graph [10]. We are satisfied with that
asymptotic space bound and allow ourselves O(m) storage in addition to the graph representation.

We analyze a simple, elegant algorithm by Cohen [3] for listing triangles in graphs: Give each
node a “bucket.” Place each edge into the bucket of its endpoint of lowest degree, breaking ties
consistently. Two edges (u, v) and (v, w) that share a vertex v might be part of a triangle (u, v, w).
One need only check for the edge (u,w). Each node checks each pair of edges in its bucket, testing
for the adjacency that would complete that triangle. Since each triangle has one vertex of lowest
degree (with tie-breaking), precisely one of its vertices will find it.

For a graph G = (V,E) with n nodes and m edges, placing nodes into buckets requires O(m)
time. The complexity of Cohen’s algorithm is determined by the number of edge pairs, summed
over all node buckets. Cohen informally argues that nodes of high degree donate many edges to
nodes of low degree, and therefore the total work should be reasonable.

We analyze Cohen’s algorithm for a class of random graphs with arbitrary degree sequences. We
show that Cohen’s algorithm runs in expected linear time for a class of power law graphs defined
below, which also shows the expected number of triangles for this class of graphs is also linear.

1.1 Preliminaries

One way to define a random graph is by its underlying degree distribution. We can express this via
a marginal reference distribution, which statistically gives the probability distribution for the degree
of an individual node within the graph. We refer to such a distribution as a reference distribution.
More specifically, for any node, its random degree D has a probability mass function

f(d) = P (D = d), integer d ∈ [0,∞), (1)

where
∑∞

d=0 f(d) = 1.
Currently power law degree distributions are popular, since they appear in many large data sets

such as social networks, the AS-level internet graph [15], and the world-wide-web graph [11, 12].
The power-law degree distribution is defined on [1,∞) and with reference distribution

P (D = d) = f(d) = G(d)d−α, integer d ≥ 1, (2)

where α ≥ 1 is the tail index and G(·) is a slowly varying function at ∞ (i.e., for any t > 0,
G(td)/G(d) → 1 as d → ∞.) Our results apply for n-node power law graphs with α > 7

3 and
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maximum degree
√
n. In Liu et. al.’s model of WWW graph growth, when the out-degree has a

power law distribution and average degree 3, then the indegree distribution follows a power law
with α = 7

3 .
The rth moment, r > 0, of the reference degree distribution is given by E[Dr] =

∑∞
d=0 d

r · f(d).
The first moment (r = 1) is the mean, or average, degree.

Power-law graphs have bounded (constant) average degree (first moments) for values of α com-
mon in the literature (e.g. 2 < α ≤ 3). Although one might be tempted to argue that then the
expected value of the square of the average degree, and hence the expected number of pairs per
bucket, is also bounded, this would not be correct. The rth moment calculation, in this case for
r = 2 is nonlinear. Thus it’s possible for larger moments to have limits that grow as a function of n
because the weight of larger values of d becomes significant for larger r. The probability f(d) is not
sufficiently small relative to dr. We will show in Section 2 that for distributions with finite second
moment, Cohen’s algorithm trivially runs in linear time.

1.2 Analysis of Power-Law Graphs

Latapy describes two triangle listing algorithms that run in worst-case O(mn
1
α ) time and O(m)

space, where n is the number of vertices in an undirected power-law graph, m is the number of
edges, and the probability of a vertex having degree k is proportional to k−α [10]. Although Latapy
describes power-law degree distribution by probabilities, he defines an instance of a power law
graph based upon the vector of degrees (degree sequence) for its n vertices. Specifically, he defines
a continuous power law graph as one where the proportion of vertices of each degree is equal to
the expected value. This creates correlation among the vertex degrees. It also limits the number of
graphs considered to follow a power law. This is somewhat akin to considering a coin fair only if
n tosses results in precisely n/2 heads and n/2 tails. Once defined this way, Latapy can consider
worst-case placement of edges for his algorithm.

To do a statistically rigorous expected average-case analysis of Cohen’s algorithm, we must
consider, not just averages, but full joint-degree distributions. This is a probability distribution
on the degree sequence for the entire graph, not a single specific degree sequence. In Section 1.4
we describe a rigorous graph generation process. We then analyze the expected performance of
Cohen’s algorithm over the distribution of graphs that process can generate. This allows us to use
a node-centric analysis, taking advantage of the symmetry and independence of all nodes.

1.3 Results

Our primary contributions are:
1. We introduce a rigorous technique for analyzing the neighborhoods of vertices in random

graphs using a realistic generation model. We require only that the marginal degree distribu-
tion has finite 4

3 moment.
2. We apply this technique to n-node power law graphs with exponent α > 7

3 and degree at most√
n, to prove linear expected time bounds on Cohen’s triangle listing algorithm.

3. We provide experimental evidence of a small difference between the performance of Cohen’s
algorithm on power-law inputs and its predicted performance from the generation model.

1.4 Graph Generation Model

We generate simple, undirected random graphs with n nodes according to the “erased configuration
model" (ECM) of Britton, Deijfen and Martin-Löf [16]. The ECM accepts an arbitrary degree
distribution, for example a power-law degree distribution, as input. The ECM is a modification of
the configuration model (CM) introduced by Bender and Canfield [4] and studied by Wormald [21],
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Bollobás [2] and Newman [14] among others. In particular, we employ a version of the ECM which
involves truncation of an underlying degree distribution to ensure degrees are essentially bounded by
nτ for some τ ∈ (0, 1/2) (cf. Britton, Deijfen and Martin-Löf [16], p. 1381). To ensure a physically
meaningful or well behaved degree sequence, many authors in the physics community have used
similar truncation. Malloy and Reed [13] truncate at both n1/4−ε and n1/8−ε, Newman [14] truncates
at the maximum degree, and Chung and Lu [5] truncate such that maxi d2

i ≤
∑

i di. Although we
consider ECM graphs with degree truncation, we shall simply refer to the final random graph as an
ECM graph.

Suppose we are given an underlying degree distribution ( 1). We require the degree distribution
to have a finite first moment or expected value E[D] =

∑∞
d=0 d · f(d) = O(1). To generate an ECM

graph with n nodes, we draw potential degrees for each node from a truncated version of (1):

fn(d) ≡
{
f(d)/Cn integer 0 ≤ d ≤ L(n)nτ

0 otherwise, (3)

where Cn ≡
∑

0≤d≤L(n)nτ f(d) is the normalizing constant, the power τ ∈ (0, 1/2) may be arbitrarily
chosen, and L(·) represents an arbitrary function that is slowly varying at∞ (i.e., limn→∞ L(nt)/L(n) =
1 for any t > 0 such as L(n) = O(logk(n)) for constant k. Given n, let random variables
D1,n, . . . , Dn,n be independent, identically distributed draws from (3) and assign Di,n “stubs" to
node i = 1, . . . , n. Assuming Sn ≡

∑n
i=1Di,n is even, randomly pair the Sn stubs, with every

“pairing configuration" equally likely. If Sn is odd, before randomly pairing, randomly pick one
integer I from {1, . . . , n}, and increment DI,n by 1. This process generates a graph under the CM,
which may not be simple due to self-loops (formed from randomly pairing stubs on the same node)
or multi-edges (formed by pairing multiple stubs between two nodes). To obtain a simple graph,
remove all self-loops and merge any existing multi-edges into a single edge to produce a final graph
under the ECM.

After the erasure step, denote the observed degrees in the final simple graph as Ds
1,n, . . . , D

s
n,n,

which have a common distribution P (Ds
1,n = d), d ≥ 0, that depends on the number of nodes n

in the graph as well as the reference degree distribution f from (1). When f has a finite mean,
Theorem 2.1 of Britton, Deijfen and Martin-Löf (2006) implies that, for any integer d,

lim
n→∞

P (Ds
1,n = d) = P (D = d) = f(d),

implying that the degree distribution of an ECM graph will asymptotically match the reference
distribution (1). We note that Britton, Deijfen and Martin-Löf [16] describe other random graphs
based on the CM, such as a repeated CM (i.e., repeatedly generating CM graphs until a simple one
is obtained). But, for the degree distribution in a repeated CM graph to asymptotically match a
reference degree distribution f , we would need to assume f has a finite second moment which is
unnecessary and restrictive in the results to follow.

2 Bounding the Work in Cohen’s Algorithm

We now establish a non-trivial bound on the expected sizes of “buckets" in Cohen’s triangle enu-
meration algorithm for large ECM graphs.

We define nodes i and j be neighbors if they share an edge in the ECM graph. Fix an arbitrary
node i among the n nodes of the graph and define a “bucket"

Bi,n = {j : i 6= j,Ds
i,n ≤ Ds

j,n, node i and node j are neighbors},

which corresponds to the set of all neighbors of node i having degree at least as great as that of
node i. This produces buckets somewhat larger than Cohen’s algorithm, since here an edge between
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nodes of equal degree count toward the bucket of both endpoints, while in Cohen’s algorithm, it
will be in only one. Let Ni,n = |Bi,n| be the size of the bucket for node i in a graph with n nodes.
The number of possible node pairs that can be formed from nodes in the bucket Bi,n is(

Ni,n

2

)
=
Ni,n(Ni,n − 1)

2
.

We wish to bound the expected value E[
(Ni,n

2

)
] as the number of nodes n → ∞. Recall that

the rth moment, r > 0, of the reference degree distribution is given by E[Dr] =
∑∞

d=0 d
r · f(d)

and first moment (r = 1) is the mean degree. Our main theorem gives an explicit expression for
limn→∞ E[

(Ni,n
2

)
] when the underlying degree distribution (1) has a finite 4/3-moment. We prove

this upper bound on the expected triangle-searching work per bucket in the Cohen algorithm is
finite, bounded by a constant. We also determine the limiting form of expected bucket size E[Ni,n].
For the Cohen algorithm, the expected bucket size is one half the expected number of edges in the
ECM. For our slightly more pessimistic counting, it will be no more than twice this value. The
proof of Theorem 1 appears in Section 3.

Theorem 1. Under the ECM for generating random graphs (involving truncation of the reference
degree distribution (1)), suppose E[D] =

∑∞
d=0 d · f(d) ∈ (0,∞).

(i) Then as n→∞,

E[Ni,n]→ 1
E[D]

∞∑
d1=0

∞∑
d2=d1

d1d2f(d1)f(d2) = O(1).

(ii) If E[D4/3] = O(1) for (1), then as n→∞,

E
[(
Ni,n

2

)]
→ 1

2(E[D])2

∞∑
d1=0

∞∑
d2=d1

∞∑
d3=d1

d1(d1 − 1)d2d3f(d1)f(d2)f(d3) = O(1).

Remark 1: We wish to highlight one crucial point regarding moments, degree truncation and
Theorem 1. In subsequent work outside the scope of this paper [8], we show that if the ref-
erence degree distribution f in (1) has a finite second moment E[D2] =

∑∞
d=0 d

2 · f(d) < ∞,
both limit results in Theorem 1 hold without any degree truncation in the ECM. That is, in this
case, the ECM graph could be formed by initial stubs D1,n, . . . , Dn,n drawn directly from f in
(1), as opposed to the truncated version fn in (3), and the same limits for the bucket expecta-
tions remain valid. Consequently, the limit results in Theorem 1 apply to all ECM graphs where
E[D2] = O(1) even without truncation. The moment assumption E[D4/3] = O(1) turns out to be
bare minimal for ensuring finite limiting bucket expectations in Theorem 1 (just enough to guaran-
tee
∑∞

d1=0

∑∞
d2=d1

∑∞
d3=d1

d1(d1−1)d2d3f(d1)f(d2)f(d3) is finite for example), but as a trade-off we
require additional degree truncation (3) to establish such limits under this weak moment condition.

To frame the results in Theorem 1, note that the bucket size Ni,n of node i is always bounded
by the initial degree Di,n of node i; that is, Ni,n ≤ Di,n and

(Ni,n
2

)
≤
(Di,n

2

)
≤ D2

i,n. Consequently,
it follows that

lim sup
n→∞

E
[(
Ni,n

2

)]
≤ lim sup

n→∞
E[D2

i,n] = lim sup
n→∞

∞∑
d=0

d2fn(d) =
∞∑
d=0

d2f(d) ≡ E[D2].

Hence, whenever E[D2] = O(1) in the reference degree distribution (1), the value of E[
(Ni,n

2

)
] will

be trivially finite and bounded for all graph sizes n (though the exact form of limn→∞ E[
(Ni,n

2

)
] does
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not easily follow). A crucial nontrivial aspect of Theorem 1(ii) is that the limit of E[
(Ni,n

2

)
] can also

be finite even in cases where the reference degree distribution f is so heavy in its tail probabilities
that E[D2] = ω(1). In this situation, E[D2] no longer provides a trivial finite bound on the limiting
value of E[

(Ni,n
2

)
]. These conditions hold for power-law degree distributions ( 2) with exponent (or

tail index) in particular ranges. We can re-cast the results of Theorem 1 for the special case of
power laws (2) under the additional assumption that the slowly varying function is bounded away
from zero (e.g., G(d) = C or G(d) = C log(d+ 1) for some C > 0).

Corollary 1. Under the erased configuration model, suppose the degree distribution is a power law
(2) where the slowly varying function satisfies lim infd→∞G(d) > 0. Then, the following table sum-
maries moments and limits as finite (F) or infinite (∞). “F-Th1" means the values of finite limits
are given in Theorem 1.

E[D] lim
n→∞

E[Ni,n] E[D4/3] lim
n→∞

E
[(
Ni,n

2

)]
E[D2]

α ≤ 2 ∞ ∞ ∞ ∞ ∞
α ∈ (2, 21

3 ] F F-Th1 ∞ ∞ ∞
α ∈ (21

3 , 3] F F-Th1 F F-Th1 ∞
α > 3 F F-Th1 F F-Th1 F

Corollary 1 implies that, for power laws (2), the limiting expectation in Theorem 1(ii) [or (i)]
is finite if and only if E[D4/3] = O(1) [E[D] = O(1)], which holds if and only if α > 21

3 [α > 2].
Perhaps surprisingly, the expected pairs from a bucket will remain finite as the graph grows for
heavy tailed power laws with index α ∈ (21

3 , 3] for which E[D2] = ω(1) holds.

The asymptotic behavior of expected bucket pair counts E[
(Ni,n

2

)
] also has ties to the clustering

coefficient for the configuration model [14]. This is usually defined as a (perhaps scaled) ratio be-
tween the number of triangles in a graph and the number of paths of length 2 (partial triangles). For
many reference degree distributions, such as Poisson (where all moments are finite), the clustering
coefficient tends to 0 at rate O(n−1) [20]. However, for highly skewed degree distributions, the
convergence of the clustering coefficient depends more closely on the moments of the distribution.
In particular, power law degree distributions require an index α > 21

3 for the clustering coefficient
to converge to zero [14], which is exactly the power index required for expected number of pairs for
a bucket to converge finitely.

3 Proof of the Main Theorem

In this section, we give the proof for Theorem 1. Recall that producing a graph under the erased
configuration model (ECM) first requires generating a configuration model (CM) graph based on
stubs drawn from an truncated reference distribution. To study ECM graphs, we must usually
formulate and examine random events which may occur under the CM before any erasure for the
ECM. For example, in order for nodes to be neighbors in an ECM graph, the nodes must first be
neighbors in a pre-erasure CM graph. We will make such events clear in the following.

If A and B represent two generic events, let “A,B" denote their set intersection and define
the indicator function of an event A as I(A) = 1 if A holds and otherwise I(A) = 0. In a graph
containing n nodes, recall D1,n, . . . , Dn,n are pre-erasure stubs for nodes drawn independently from
(3) and Ds

1,n, . . . , D
s
n,n denote final degrees in the simple graph under the ECM.

With the ECM generation model, in a graph with n nodes, the distribution of a bucket size Ni,n

does not depend on the particular node i. WLOG we pick and fix node 1, noting that E[Ni,n] =
E[N1,n] and E[

(Ni,n
2

)
] = E[

(N1,n

2

)
] for 1 ≤ i ≤ n. Let A1,j,n denote the event that a node j 6= 1 is a

neighbor of a node 1 in the ECM and that Ds
j,n ≥ Ds

1,n holds. Thus edge (1, j) will be in node 1’s
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bucket in Cohen’s algorithm. The number of elements in node 1’s bucket N1,n =
∑n

j=2 I(A1,j,n).
Thus,

E[N1,n] =
n∑
j=2

E
[
I(A1,j,n)

]
= (n− 1)P (A1,2,n),

since E
[
I(A1,j,n)

]
= P (A1,j,n) = P (A1,2,n) for 2 ≤ j ≤ n. Similarly,

E[N2
1,n] =

n∑
j=1,j 6=1

n∑
k=1,k 6=1

E
[
I(A1,j,n, A1,k,n)

]
= (n− 1)(n− 2)P (A1,2,n, A1,3,n) + (n− 1)P (A1,2,n)

because I(A1,j,n, A1,k,n) = I(A1,j,n) if j = k and E
[
I(A1,j,n, A1,k,n)

]
= P (A1,j,n, A1,k,n) = P (A1,2,n, A1,3,n)

for any distinct nodes 1 < j, k ≤ n. Substitution of these expressions yields

E
[(
N1,n

2

)]
=

1
2

(E[N2
1,n]− E[N1,n]) =

(
n− 1

2

)
P (A1,2,n, A1,3,n).

To consolidate notation, for fixed m ∈ {2, 3}, let NBm,n denote the event that node 1 is a
neighbor of each node from node 2 through node m in the ECM (or equivalently in the pre-erasure
CM) and let NBDm,n denote the compound event that NBm,n holds along with Ds

i,n ≥ Ds
1,n for

i = 1, . . . ,m. We have

E[N1,n] = (n− 1)P (NBD2,n) E[
(
N1,n

2

)
] =

(
n− 1

2

)
P (NBD3,n).

Theorem 1 will follow immediately by showing that

lim
n→∞

nm−1P (NBDm,n) =


1

E[D]

∞∑
d1=0

∞∑
d2=d1

d1d2f(d1)f(d2) if m = 2

1
E[D]2

∞∑
d1=0

∞∑
d2=d1

∞∑
d3=d1

d1(d1 − 1)d2d3f(d1)f(d2)f(d3) if m = 3,
(4)

under moment conditions on the degree distribution (1) (either E[D] = O(1) for the m = 2 case or
E[D4/3] = O(1) for the m = 3 case).

To show (4), we fix m ∈ {2, 3} and expand the probability P (NBDm,n) in terms of the pre-
erasure stubs D1,n, . . . , Dm,n. For m = 2, 3, let SLMm,n denote the event that, before erasing, some
node i among {1, . . . ,m} has at least one self-loop or at least one multi-edge or that the stubs Di,n

of node i have been incremented by 1. Recall that when
∑n

i=1Di,n is odd, the stubs of one randomly
selected node are incremented by 1 before random pairing of stubs. Then, the complement SLMc

m,n

is the event that no nodes among {1, . . . ,m} have any self-loops or multi-edges in the pre-erasure
CM (i.e., before erasing in the ECM) and that no nodes among {1, . . . ,m} have had their initial
draws of stubs incremented. For a generic event Bn, let P (Bn|d1, . . . , dm) denote the condition
probability of Bn given realized values D1,n = d1, . . . , Dm,n = dm of D1,n, . . . , Dm,n. The following
probability of intersecting events may be written conditionally,

P (Bn, D1,n = d1, . . . , Dm,n = dm) = P (Bn|d1, . . . , dm)P (D1,n = d1, . . . , Dm,n = dm).

We have P (D1,n = d1, . . . , Dm,n = dm) =
∏m
i=1 fn(di) using (3) and independence. We then may

decompose P (NBDm,n) as a sum of probabilities P (NBDm,n, D1,n = d1, . . . , Dm,n = dm) over every

6



possible realization (d1, . . . , dm) of pre-erasure stub draws (D1,n, . . . , Dm,n):

P (NBDm,n) =
∞∑
d1=0

· · ·
∞∑

dm=0

P (NBDm,n, D1,n = d1, . . . , Dm,n = dm)

=
∞∑
d1=0

· · ·
∞∑

dm=0

P (NBDm,n|d1, . . . , dm)
m∏
i=1

fn(di)

=
∞∑
d1=0

· · ·
∞∑

dm=0

P (NBDm,n, SLMm,n|d1, . . . , dm)
m∏
i=1

fn(di) + (5)

∞∑
d1=0

· · ·
∞∑

dm=0

P (NBDm,n, SLMc
m,n|d1, . . . , dm)

m∏
i=1

fn(di),

where the last line above follows from decomposing P (NBDm,n|d1, . . . , dm) as the sum of conditional
probabilities for disjoint events NBDm,n, SLMm,n and NBDm,n, SLMc

m,n.
When SLMc

m,n holds, it follows that Di,n = Ds
i,n for i = 1, . . . ,m so that Ds

i,n ≥ Ds
1,n becomes

equivalent to Di,n ≥ D1,n for i = 1, . . . ,m. Consequently, it follows that

P (NBDm,n, SLMc
m,n|d1, . . . , dm) =

{
P (NBm,n,SLMc

m,n|d1, . . . , dm) if d2, . . . , dm ≥ d1

0 otherwise. (6)

This means that, conditional on D1,n = d1, . . . , Dm,n = dm, if di ≥ d1 holds for every i ∈ {1, . . . ,m}
then events “NBDm,n,SLMc

m,n" and “NBm,n, SLMc
m,n" are equivalent. That is, if SLMc

m,n already
holds given D1,n = d1, . . . , Dm,n = dm with di ≥ d1, then so does Ds

i,n = di ≥ Ds
1,n = d1 for

i = 1, . . . ,m. Therefore, event NBDm,n may hold in addition to SLMc
m,n if and only if NBm,n holds

additionally. Also given di < d1 holds for some i ∈ {1, . . . ,m}, NBDm,n and SLMc
m,n cannot occur

simultaneously and so P (NBDm,n, SLMc
m,n|d1, . . . , dm) = 0 in (6). For fixed m = 2, 3, we define a

scaled probability based on (5) and (6) as

p(1)
m,n ≡ nm−1

∞∑
d1=0

· · ·
∞∑

dm=0

P (NBDm,n, SLMc
m,n|d1, . . . , dm)

m∏
i=1

fn(di)

=
∞∑
d1=0

∞∑
d2=d1

· · ·
∞∑

dm=d1

nm−1P (NBm,n, SLMc
m,n|d1, . . . , dm)

m∏
i=1

fn(di)

(where summation indices d2, . . . , dm range from d1 to ∞ in the second line above by (6)). Using
this with (5), we may bound

p(1)
m,n ≤ nm−1P (NBDm,n) ≤ p(1)

m,n + p(2)
m,n

where

p(2)
m,n ≡

∞∑
d1=0

· · ·
∞∑

dm=0

nm−1P (NBDm,n, SLMm,n|d1, . . . , dm)
m∏
i=1

fn(di).

Now to show (4) for m = 2, 3 and thereby Theorem 1, it suffices to establish

lim
n→∞

p(1)
m,n =


1

E[D]

∞∑
d1=0

∞∑
d2=d1

d1d2f(d1)f(d2) if m = 2

1
[E[D]2

∞∑
d1=0

∞∑
d2=d1

∞∑
d3=d1

d1(d1 − 1)d2d3f(d1)f(d2)f(d3) if m = 3,
(7)

lim
n→∞

p(2)
m,n = 0.

7



To prove (7), we use the Lesbegue Dominated Convergence Theorem (LDCT) along with techni-
cal results in Lemma 1 below (which will be proven in Section B). Recall that P (NBm,n|d1, . . . , dm)
denotes the conditional probability that node 1 is a neighbor of nodes 2 throughm (in the pre-erasure
CM or in the ECM) given the observed stubs D1,n = d1, . . . , Dm,n = dm.

Lemma 1. Under the CM (i.e., pre-erasure ECM) for generating random graphs (involving trun-
cation of the reference degree distribution (1)), suppose E[D] =

∑∞
d=0 d · f(d) ∈ (0,∞). Fix m = 2

or 3.
(i) Then, for any arbitrary integers d1, . . . , dm ≥ 0 with

∏m
i=1 f(di) > 0,

lim
n→∞

nm−1P (NBm,n,SLMc
m,n|d1, . . . , dm) (8)

= lim
n→∞

nm−1P (NBm,n|d1, . . . , dm)

=
{
d1d2/E[D] if m = 2
d1(d1 − 1)d2d3/(E[D])2 if m = 3.

(ii) For m = 2, there exists a real C > 0 such that

0 ≤ nP (NBD2,n,SLM2,n|d1, d2), nP (NB2,n, SLMc
2,n|d1, d2) ≤ nP (NB2,n|d1, d2) ≤ Cd1d2

holds for any n ≥ 3 and all integers d1, d2 ≥ 0.
(iii) For m = 3, there exists a real C > 0 such that

0 ≤ n2P (NBD3,n,SLM3,n|d1, d2, d3)
3∏
i=1

fn(di) ≤ C(d1d2d3)4/3
3∏
i=1

f(di)

holds for any n ≥ 4 and all integers d1, d2, d3 ≥ 0 and

0 ≤ n2P (NB3,n, SLMc
3,n|d1, d2, d3) ≤ n2P (NB3,n|d1, d2, d3) ≤ C(d1d2d3)4/3

holds for any n ≥ 4 and all integers d2, d3 ≥ d1 ≥ 0.

The LDCT allows limits (7) of sums p(1)
m,n, p

(2)
m,n (i.e., sums over integer-tuples (d1, . . . , dm)) to

be determined by sums of limits

lim
n→∞

p(1)
m,n =

∞∑
d1=0

∞∑
d2=d1

· · ·
∞∑

dm=d1

lim
n→∞

nm−1P (NBm,n, SLMc
m,n|d1, . . . , dm)

m∏
i=1

fn(di)

lim
n→∞

p(2)
m,n =

∞∑
d1=0

· · ·
∞∑

dm=0

lim
n→∞

nm−1P (NBm,n,SLMm,n|d1, . . . , dm)
m∏
i=1

fn(di). (9)

Assuming that (9) indeed holds, the substitution of limn→∞
∏m
i=1 fn(di) =

∏m
i=1 f(di) and limiting

values of limn→∞ n
m−1P (NBm,n,SLMc

m,n|d1, . . . , dm) from Lemma 1(i) into (9) (for given values
d1, . . . , dm ≥ 0) will establish the limn→∞ p

(1)
m,n result in (7) and substitution of

lim
n→∞

nm−1P (NBDm,n, SLMm,n|d1, . . . , dm) = 0 (10)

in (9) will establish limn→∞ p
(2)
m,n = 0 in (7), where

0 = lim
n→∞

nm−1
[
P (NBm,n|d1, . . . , dm)− P (NBm,n, SLMc

m,n|d1, . . . , dm)
]

= lim
n→∞

nm−1P (NBm,n,SLMm,n|d1, . . . , dm)

≥ lim
n→∞

nm−1P (NBDm,n, SLMm,n|d1, . . . , dm) ≥ 0

8



follows from Lemma 1(i) and P (NBm,n, SLMm,n|d1, . . . , dm) ≥ P (NBDm,n, SLMm,n|d1, . . . , dm) by
NBDm,n ⊆ NBm,n. The proof of Theorem 1 will then be finished after justifying (9).

For fixed m = 2, 3, the order of summation and limits may be validly exchanged in (9) under
the LDCT because (under the assumptions of Theorem 1) there exists a “dominating" nonnegative
real-valued function gm(d1, . . . , dm) of integers d1, . . . , dm ≥ 0 (depending on m = 2, 3 but not n)
for which it holds that

1. nm−1P (NBDm,n, SLMm,n|d1, . . . , dm)
∏m
i=1 fn(di) ≤ gm(d1, . . . , dm) for any n ≥ 4, all integers

d1, . . . , dm ≥ 0;

2. nm−1P (NBm,n,SLMc
m,n|d1, . . . , dm)

∏m
i=1 fn(di) ≤ gm(d1, . . . , dm) for all n ≥ 4, all integers

d2, . . . , dm ≥ d1 ≥ 0;

3. and
∞∑
d1=0

· · ·
∞∑

dm=0

gm(d1, . . . , dm) <∞. (11)

In other words, for any n ≥ 4, gm(d1, . . . , dm) dominates each summand of p(1)
m,n over the range

of summation defining p
(1)
m,n (i.e., integers d2, . . . , dm ≥ d1 ≥ 0) and dominates each summand

of p(2)
m,n over the range of summation defining p(2)

m,n (i.e., integers d1, . . . , dm ≥ 0), while by (11)
gm(d1, . . . , dm) is finitely summable over all integers d1, . . . , dm ≥ 0 (the largest possible range of
summation). Hence, the order of limits and summation may be exchanged in (9) via the LDCT
(cf. Ch. 3, Athreya and Lahiri, 2006). The dominating function gm(d1, . . . , dm) is defined as follows.
From Lemma 1(ii), we may set g2(d1, d2) = Cd1d2f(d1)f(d2) for some real C > supn≥1C

−2
n > 0

when m = 2 so that a finite sum in (11) follows by E[D] < ∞ in this case under Theorem 1 (note
from (3) that fn(d) ≤ f(d) supn≥1C

−2
n for all n ≥ 1, d ≥ 0); under the additional assumption in

Theorem 1(ii) that E[D4/3] = O(1), we use Lemma 1(iii) to define g3(d1, d2, d3) = C
∏3
i=1 f(di)d

4/3
i

for some real C > 0 when m = 3 so that a finite sum in (11) follows by E[D4/3] = O(1) in this case.
2

Remark 2: The proof above has some implications for probabilities of neighbor relationships
in the CM or in the ECM. We mention two conditional probabilities (i.e., d2d1/[nE[D]], d1(d −
1)d2d3/[nE[D]]2) which asymptotically contribute to the sums in Theorem 1.

The limit (10) shows that, asymptotically, the possibility of self-loops or multi-edges involving
at least one of the nodes among {1, . . . ,m} is negligible in determining the conditional probability
that node 1 is a neighbor of nodes 2 through m given D1,n = d1, . . . , Dm,n = dm. In other words, (8)
says that when m = 2 and we consider the conditional probability that nodes 1 and 2 are neighbors
in a large CM graph,

P (NB2,n, SLMc
2,n|d1, d2) ≈ P (NB2,n|d1, d2) ≈ d2

d1

nE[D]

holds with the interpretation that (in a large graph and given D1,n = d1, D2,n = d2) the conditional
probability d2d1/[nE[D]] that nodes 1 and 2 are neighbors in a graph from the CM (or even from
the ECM) is the same as the conditional probability that the pre-erasure CM yields a graph where
nodes 1 and 2 are neighbors but with no self-loops or multi-edges involving these nodes. In a sense,
we pick exactly one stub from d2 stubs available for node 2 and then connect it to a stub of node 1
with approximate probability d1/nE[D] in random rewiring (where there are n nodes in the graph
with E[D] =

∑∞
d=0 d · f(d) stubs on average), so that d2d1/[nE[D]] represents the probability that

nodes 1 and 2 are neighbors (with or without any multi-edges or self-loops) in a CM graph.
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Figure 1: Experimental results with the truncated and non-truncated ECM. The red (solid) line shows
the number of nodes n. The green dashed, plain line shows the computed bound on the expected number
of pairs per bucket. The green (dashed, crosses) line shows the number of observed pairs per bucket in our
experiments when truncating the degree at n− 1, and the magenta (dashed, boxes) line shows the number
of observed pairs per bucket when truncating the degree at

√
n.

When m = 3, the conditional probability that node 1 is a neighbor of nodes 2 and 3 given
D1,n = d1, D2,n = d2, D3,n = d3 in a CM large graph is

P (NB3,n, SLMc
3,n|d1, d2, d3) ≈ P (NB3,n|d1, d2, d3) ≈ d2

d1

nE[D]
× d3

d1 − 1
nE[D]

,

where, after connecting one stub from node 1 to one stub from node 2 with probability d2d1/[nE[D]],
we pick one of the d3 stubs of node 3 to connect to a remaining stub of node 1 with probability
(d1 − 1)/nE[D].

4 Experimental Results

We have proved that the expected number of pairs in Cohen’s buckets grows linearly in the truncated
ECM when the reference degree distribution has a finite 4/3 moment. Power Law graphs with
α = 2.4, and with degree truncation at n0, 1

2 have this moment. In real power law graph instances,
however, there will be vertices of degree greater than n

1
2 . We have shown in Corollary 1 that the

number of pairs in a bucket in that case grows super-linearly. However, we now offer empirical
evidence that the effect of truncating at n − 1, i.e., not truncating, is small. Figure 1 shows that
when α = 2.4, the average number of pairs observed in 100 Monte Carlo trials at each of various
ECM graph sizes is very close to the average number with observed with

√
n truncation. In fact,

as graph sizes increase past several million vertices, we still observe fewer than one pair per bucket
on average in our experiments with the n − 1 truncated ECM. Thus, even in a regime in which
we cannot prove a linear time bound for Cohen’s algorithm, our experiments indicate that its true
running time is a slow-growing function of n.
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B Appendix: Proof of Lemma 1

To establish Lemma 1, we require some additional notation and a technical result presented in
Lemma 2 below.

In constructing a generic graph under the pre-erasure CM, suppose that, before any random
wiring, that a given node A1 as a1 stubs, a second given node A2 has a2 stubs, and that s is the
combined number of stubs among all other nodes in the graph, where a1, a2, s ≥ 0 are integers
with a1 + a2 + s ≥ 2 even. The total number of configurations which pair a1 + a2 + s stubs into
(a1 + a2 + s)/2 edges in a CM graph is given by

1
[(a1 + a2 + s)/2]!

(
a1 + a2 + s

2

)(
a1 + a2 + s− 2

2

)
· · ·
(

2
2

)
= P a1+a2+s

(a1+a2+s)/22−(a1+a2+s)/2,

expressed using the permutation function P yx = y!/(y − x)! for integers y ≥ x ≥ 0 and P yx = 0
if x > y ≥ 0. (Above the factor [(a1 + a2 + s)/2]! adjusts for the fact that the order in which
(a1 + a2 + s)/2 pairs are formed is irrelevant.) Then, given values of a1, a2, s, the probability that
the pre-erasure CM produces a graph where node A1 has exactly 0 ≤ k ≤ ba1/2c self-loops and
shares no edges with node A2 is given by a function

h(a1, a2, s, k)

≡ 1
k!

(
a1

2

)
· · ·
(
a1 − 2k

2

)
P sa1−2kP

s+a2−(a1−2k)
[s+a2−(a1−2k)]/22−[s+a2−(a1−2k)]/2

/
P a1+a2+s

(a1+a2+s)/22−(a1+a2+s)/2

=
2a1−2k

k!
P a1

2kP
s
a1−2kP

s+a2−(a1−2k)
[s+a2−(a1−2k)]/2

/
P a1+a2+s

(a1+a2+s)/2,

where, in the numerator above, 1
k!

(
a1

2

)
· · ·
(
a1−2k

2

)
is the number of ways to pick and pair 2k

stubs from a1 stubs to form k self-loops, P sa1−2k is the number of ways to pair the remaining
a1 − 2k stubs of node A1 to the collection of s stubs (not involving stubs of node A2), and
P sa1−2kP

s+a2−(a1−2k)
[s+a2−(a1−2k)]/22−[s+a2−(a1−2k)]/2 is the number of ways to pair the remaining s+a2−(a1−2k)
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stubs in the graph. Accounting for any potential number of self-loops involving node A1, the proba-
bility of a CM graph where node A1 shares no edges with node A2 is given by the sum of probabilities
of disjoint events

ba1/2c∑
k=0

h(a1, a2, s, k)

and the conditional probability that node A1 and A2 are neighbors (share at least one edge) in a
CM graph is then

p1(a1, a2, s) ≡ 1−
ba1/2c∑
k=0

h(a1, a2, s, k), (12)

given values of a1, a2, s.
Additionally, using (12), we may derive one other conditional probability of interest in a CM

graph. Before any random wiring in the pre-erasure CM, suppose that three nodes A1, A2, A3 have
given values of stubs a1, a2, a3 and that s is the combined number of stubs among all other nodes in
the graph, where a1, a2, a3, s ≥ 0 are integers with a1 + a2 + a3 + s ≥ 2 even. Then, the conditional
probability that node A1 is a neighbor of nodes A2 and A3 in a CM graph is given by

p2(a1, a2, a3, s) ≡ p1(a1, a2, a3 + s) + p1(a1, a3, a2 + s)− p1(a1, a2 + a3, s) (13)

using the inclusion-exclusion law and the conditional probability function (12); in other words, the
(conditional) probability p1(a1, a2 + a3, s) that node A1 shares at least one edge with node A2 or
node A3 is “the probability p1(a1, a2, a3 + s) that node A1 shares at least one edge with node A2

plus the probability p1(a1, a3, a2 + s) that node A1 shares at least one edge with node A3 minus the
probability p2(a1, a2, a3, s) that node A1 shares at least one edge with both nodes A2 and A3."

We now summarize some limiting behavior of the conditional probabilities p1(a1, a2, s) and
p2(a1, a2, a3, s) of neighboring relationships, given stub counts a1, a2, s, when the number of “re-
maining" stubs in the graph s→∞.

Lemma 2. Fix integers a1, a2, a3 ≥ 0.
(i) For any integer s ≥ 0, let s∗ = s if a1 + a2 + s is even and, otherwise, let s∗ = s+ 1. Then,

lim
s→∞

sp1(a1, a2, s
∗) = a1a2

(ii) For any integer s ≥ 0, let s∗ = s if a1 +a2 +a3 + s is even and, otherwise, let s∗ = s+ 1. Then,

lim
s→∞

s2p2(a1, a2, a3, s
∗) = a1(a1 − 1)a2a3.

We defer the proof of Lemma 2 to Section B.0.5 and consider now establishing Lemma 1.

To simplify the exposition, we shall first give a prove of Lemma 1 under the additional assumption
that f(0) = 0 in the reference distribution (1). This implies that, for any n ≥ 1, the initial stub size
Di,n of any node i ∈ {1, . . . , n} must be at least 1. The resulting proof of Lemma 1 may then be
modified to treat the possibility that f(0) > 0; we describe the modification in Section B.0.4.

B.0.1 Proof of Lemma 1(i)

We require an expansion of the conditional probability P (NBm,n|d1, . . . , dm) that node 1 is a
neighbor of nodes 2 through m in the pre-erasure CM (or in the ECM), for fixed m = 2, 3.
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Let Sn−m ≡
∑n

i=m+1Di,n represent the partial sum of all (pre-erasure) stubs excluding nodes 1
through m, let fSn−m(s) = P (Sn−m = s), s ≥ n − m denote the probability function of Sn−m,
and let P (NBm,n|d1, . . . , dm, s) ≡ P (NBm,n, D1,n = d1, . . . , Dm,n = dm, Sn−m = s)/P (D1,n =
d1, . . . , Dm,n = dm, Sn−m = s) denote the conditional probability that node 1 is a neighbor of nodes
2 through m in the pre-erasure CM given that D1,n = d1, . . . , Dm,n = dm, Sn−m = s. Then,

P (NBm,n|d1, . . . , dm) =
P (NBm,n, D1,n = d1, . . . , Dm,n = dm)

P (D1,n = d1, . . . , Dm,n = dm)

=
∞∑

s=n−m

fSn−m(s)
fSn−m(s)

P (NBm,n, D1,n = d1, . . . , Dm,n = dm, Sn−m = s)
P (D1,n = d1, . . . , Dm,n = dm)

=
∞∑

s=n−m
fSn−m(s)P (NBm,n|d1, . . . , dm, s) (14)

using fSn−m(s)P (D1,n = d1, . . . , Dm,n = dm) = P (D1,n = d1, . . . , Dm,n = dm, Sn−m = s) by the in-
dependence ofD1,n, . . . , Dn,n. We may now determine a further expression for P (NBm,n|d1, . . . , dm, s)
using the conditional probability functions developed in (12) and (13). For m = 2, the conditional
probability P (NB2,n|d1, d2, s) that node 1 is a neighbor of node 2 givenD1,n = d1, D2,n = d2, Sn−2 =
s is then given by

P (NB2,n|d1, d2, s) (15)

=
{
p1(d1, d2, s) even d1 + d2 + s
1
np1(d1 + 1, d2, s) + 1

np1(d1, d2 + 1, s) + n−2
n p1(d1, d2, s+ 1) odd d1 + d2 + s,

where, in the case of odd d1 + d2 + s, one of the n nodes is randomly picked and its stub count
is incremented by 1. For m = 3, the conditional probability P (NB3,n|d1, d2, d3, s) that node 1 is a
neighbor of nodes 2 and 3 given D1,n = d1, D2,n = d2, D3,n = d3, Sn−3 = s is then

P (NB3,n|d1, d2, d3, s) (16)

=


p2(d1, d2, d3, s) even d1 + d2 + d3 + s
1
np2(d1 + 1, d2, d3, s) + 1

np2(d1, d2 + 1, d3, s) odd d1 + d2 + d3 + s
+ 1
np2(d1, d2, d3 + 1, s) + n−3

n p2(d1, d2, d3, s+ 1)

To show limn→∞ nP (NB2,n|d1, d2) = d1d2/E[D] in Lemma 1(i) for m = 2, use (14) to write∣∣∣∣nP (NB2,n|d1, d2)− d1d2

E[D]

∣∣∣∣ (17)

=

∣∣∣∣∣
∞∑

s=n−2

n

s
fSn−2(s) [sP (NB2,n|d1, d2, s)− d1d2] + d1d2

( ∞∑
s=n−2

n

s
fSn−2(s)− 1

E[D]

)∣∣∣∣∣
≤ n

n− 2
sup
s≥n−2

|sP (NB2,n|d1, d2, s)− d1d2|+ d1d2

∣∣∣∣E [ n

Sn−2

]
− 1

E[D]

∣∣∣∣
using above

E
[

n

Sn−2

]
=

∞∑
s=n−2

n

s
fSn−2(s) ≤ n

n− 2

∞∑
s=n−2

fSn−2(s) =
n

n− 2
.

By Lemma 2(i) and (15), it holds that

lim
n→∞

sup
s≥n−2

∣∣∣∣sP (NB2,n|d1, d2, s)−
d1d2

E[D]

∣∣∣∣ = 0.
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We next show E[(n/Sn−2)] → 1/E[D], which by (17) then proves limn→∞ nP (NB2,n|d1, d2, s) =
d1d2/E[D] in Lemma 1(i) for m = 2. (Note that, for any slowly varying function L(n), it holds
that limn→∞ n

yL(n) = ∞ and limn→∞ n
−yL(n) = 0 for any y > 0, which are used below.) Since

CnE[D1,n] =
∑nτL(n)

d=0 d · f(d) ≤ E[D] = O(1) for n ≥ 1 and limn→∞Cn = 1, it follows that
limn→∞ E[Sn−2/n] = limn→∞ E[D1,n](n− 2)/n = E[D]. Also, because D1,n, . . . , Dn,n are indepen-
dently, identically distributed and bounded by nτL(n), it follows that

E
[
Sn−2

n
− E[

Sn−2

n
]
]2

=
n− 2
n2

E[D1,n]2 ≤ n− 2
n2

[L(n)nτ ]2 → 0

as n→∞ (since τ ∈ (0, 1/2) and L(·) is slowly varying in (3)), which then implies Sn−2/n→ E[D]
in distribution as n→∞. By Skorohod’s embedding theorem (cf. Athreya and Lahiri, 2006, ch. 8),
there exist random variables Yn, n ≥ 3, defined on a common probability space, such that Yn has the
same distribution as Sn−2/n for each n and Yn → E[D] > 0 with probability 1 (w.p.1) as n → ∞.
Then, as n → ∞, 1/Yn → 1/E[D] > 0 w.p.1 and 1/Yn ≤ n/[n − 2] ≤ 3 is bounded w.p.1 for all
n ≥ 3 so that E[(n/Sn−2)] = E[(1/Yn)]→ 1/E[D] by the LDCT.

To prove limn→∞ n
2P (NB3,n|d1, d2, d3) = d1(d1 − 1)d2d3/[E[D]]2 in Lemma 1(i) for m = 3, use

(14) and (16) to write

P (NB3,n|d1, d2, d3) =
∞∑

s=n−3

fSn−2(s)p2(d1, d2, d3, s
∗) +

1
n

∑
s∈Sn

fSn−2(s)p̃2(d1, d2, d3, s)

where s∗ = s if d1 + d2 + d3 + s is even and, otherwise, s∗ = s + 1 and Sn ≡ {s ≥ n − 2 :
d1 + d2 + d3 + s odd} with

p̃2(d1, d2, d3, s) ≡ p2(d1 +1, d2, d3, s)+p2(d1, d2 +1, d3, s)+p2(d1, d2, d3 +1, s)−3p2(d1, d2, d3, s+1).

Then, ∣∣∣∣n2P (NB3,n|d1, d2, d3)− d1(d− 1)d2d3

(E[D])2

∣∣∣∣ ≤ I1n + I2n + I3n

where

I1n ≡

∣∣∣∣∣
∞∑

s=n−3

n2

s2
fSn−2(s)

[
s2p2(d1, d2, d3, s

∗)− d1(d− 1)d2d3

]∣∣∣∣∣
≤

(
n

n− 3

)2

sup
s≥n−3

∣∣s2p2(d1, d2, d3, s
∗)− d1(d− 1)d2d3

∣∣ ,
I2n ≡

∑
s∈Sn

n

s
fSn−2(s)sp̃2(d1, d2, d3, s) ≤

n

n− 3
sup
s∈Sn

sp̃2(d1, d2, d3, s),

I3n ≡ d1(d1 − 1)d2d3

∣∣∣∣E [ n2

S2
n−3

]
− 1

(E[D])2

∣∣∣∣ , (18)

where E[(n2/S2
n−3)] =

∑∞
s=n−3

n2

s2
fSn−3(s). By Lemma 2(ii), it follows that limn→∞ I1n = 0 and

limn→∞ I2n = 0 (i.e, limn→∞ sups∈Sn sp̃2(d1, d2, d3, s) = 0). Additionally, limn→∞ I3n = 0 holds
because limn→∞ E[(n2/S2

n−3)] = limn→∞ E[(n2/S2
n−2)] = limn→∞ E[(1/Y 2

n )] = 1/(E[D])2 holds by
the LDCT with 1/Y 2

n → E[D] w.p.1 as n→∞ and 1/Y 2
n ≤ 9 is bounded w.p.1 for all n ≥ 3.

To finish the proof of Lemma 1(i), we need to consider limn→∞ n
m−1P (NBm,n,SLMc

m,n|d1, . . . , dm)
for m = 2, 3. For this, we require some additional notation. Before any random wiring in a
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generic pre-erasure CM, suppose that nodes A1, . . . , Am (fixed m = 2, 3) have given values of stubs
a1, · · · , am and that s is the combined number of stubs among all other nodes in the graph, where
a1, · · · , am, s ≥ 0 are integers with a1 + · · · + am + s ≥ 2 even. Let qm(a1, . . . , am, s) denote
the probability (conditional on a1, . . . , am, s) that, upon random pairing, node A1 is a neighbor of
nodes A2 through Am and that no node among A1, . . . , Am has any self-loops or multi-edges and let
q̃m(a1, . . . , am, s) denote the probability (conditional on a1, . . . , am, s) that node A1 is not a neigh-
bor of any of the nodes A2 through Am and that no node among A1, . . . , Am has any self-loops or
multi-edges. If m = 2 with given stub counts a1, a2 ≥ 0 for nodes A1, A2 and s ≥ 1 stubs remaining,
then

q2(a1, a2, s) = a1
a2

s+ a1 + a2 − 1
q̃2(a1 − 1, a2 − 1, s);

that is, if we pick and fix one stub of A1, the probability that the chosen stub wires with a stub from
node A2 is a2/(s+a1+a2−1) and, conditional on this connection, the probability that the remaining
stubs of A1 and A2 form no further connections or self-loops or multi-edges is q̃2(a1 − 1, a2 − 1, s).
If m = 3 with given stub counts a1, a2, a3 ≥ 0 for nodes A1, A2, A3 and s ≥ 2 stubs remaining, then

q3(a1, a2, a3, s) = a1(a1 − 1)
a2

s+ a1 + a2 + a3 − 1
a3

s+ a1 + a2 + a3 − 3
q̃3(a1 − 2, a2 − 1, a3 − 1, s);

that is, given a1, a2, s, if we pick and fix two stubs of A1, the probability that the first chosen
stub of A1 wires with a stub from node A2 is a2/(s + a1 + a2 + a3 − 1) and, conditional on this
connection, the probability that the second chosen stub of A1 wires with a stub from node A3 is
a3/(s+ a1 + a2 + a3 − 3) and, conditional on these connections, the probability that the remaining
stubs of A1 form no further edges with A2 and A3 with no self-loops or multi-edges among A1, A2, A3

is q̃3(a1 − 2, a2 − 1, a3 − 1, s).
Similarly to (14), we may write

P (NBm,n, SLMc
m,n|d1, . . . , dm) =

∞∑
s=n−m

fSn−m(s)P (NBm,n, SLMc
m,n|d1, . . . , dm, s), (19)

using the conditional probability P (NBm,n, SLMc
m,n|d1, . . . , dm, s) given D1,n = d1, . . . , Dm,n =

dm, Sn−m = s, which can be written as

P (NBm,n,SLMc
m,n|d1, . . . , dm, s) (20)

=
{
qm(d1, . . . , dm, s) even d1 + · · ·+ dm + s
n−m
n qm(d1, . . . , dm, s+ 1) odd d1 + · · ·+ dm + s

=

{
d1d2

s+d1+d2−1r2(d1 − 1, d2 − 1, s) m = 2
d1(d1−1)d2d3

(s+d1+d2−1)(s+d1+d2−2)r3(d1 − 2, d2 − 1, d3 − 1, s) m = 3

with

rm(d1, . . . , dm, s) ≡
{
q̃m(d1, . . . , dm, s) even d1 + · · ·+ dm + s
n−m
n q̃m(d1, . . . , dm, s+ 1) odd d1 + · · ·+ dm + s,

m = 2, 3,

accounting for the fact that, if d1 + · · ·+ dm + s is odd, the event SLMc
m,n requires that given stubs

d1, . . . , dm are not incremented by 1, which happens with probability (n−m)/n.
We may now show limn→∞ nP (NB2,n, SLMc

2,n|d1, d2) = d1d2/[E[D]] for m = 2 Lemma 1(i). We
assume d1, d2 ≥ 1. Using (19) and (20), write∣∣∣∣nP (NB2,n,SLMc

2,n|d1, d2)− d1d2

E[D]

∣∣∣∣ ≤ J1n + J2n
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where

J1n ≡
∞∑

s=n−2

n

s
fSn−2(s)

∣∣sP (NB2,n,SLMc
2,n|d1, d2, s)− d1d2

∣∣
≤ n

n− 2
d1d2

∞∑
s=n−2

fSn−2(s)
[
1− s

d1d2
P (NB2,n,SLMc

2,n|d1, d2, s)
]

≤ n

n− 2
d1d2

(
1−

∞∑
s=n−2

fSn−2(s)r2(d1 − 1, d2 − 1, s)

)

J2n ≡ d1d2

∣∣∣∣E [ n

Sn−2

]
− 1

E[D]

∣∣∣∣
using above sP (NB2,n,SLMc

2,n|d1, d2, s)/[d1d2] ≤ r2(d1 − 1, d2 − 1, s) ≤ 1 for s ≥ n − 2 with∑∞
s=n−2 fSn−2(s) = 1 and recalling E[(n/Sn−2)] =

∑∞
s=n−2

n
s fSn−2(s). As in (17), limn→∞ J2n = 0.

Also, E[r2(d1 − 1, d2 − 1, Sn−2)] ≡
∑∞

s=n−2 fSn−2(s)r2(d1 − 1, d2 − 1, s) is the probability that, in
a pre-erasure CM with n nodes, two given nodes with initial stub values d1 − 1, d2 − 1 are not
neighbors of each other, have no self-loops or multi-edges, and do not have stubs incremented by 1
(while conditioned on d1 and d2 values, this probability is unconditional with respect to the sum of
all remaining initial stubs (e.g., Sn−2) in the graph). It follows from arguments in Britton, Deijfen
and Martin-Löf ( [16], Theorem 1) that limn→∞ E[r2(d1 − 1, d2 − 1, Sn−2)] = 1 since E[D] < ∞,
so that limn→∞ J1n = 0. Now the limit of nP (NB2,n,SLMc

2,n|d1, d2) = d1d2/[E[D]] is established
m = 2 in Lemma 1(i).
To show limn→∞ n

2P (NB3,n, SLMc
2,n|d1, d2, d3) = d1(d1 − 1)d2d3/[E[D]]2 in Lemma 1(i) for m = 3,

the argument is analogous∣∣∣∣n2P (NB3,n, SLMc
3,n|d1, d2, d3)− d1(d− 1)d2d3

[E[D]]2

∣∣∣∣ ≤ J1n + J2n

where

J1n ≡
∞∑

s=n−3

n2

s2
fSn−3(s)

∣∣s2P (NB3,n,SLMc
3,n|d1, d2, s)− d1(d1 − 1)d2d3

∣∣
≤

(
n

n− 3

)2

d1(d1 − 1)d2d3

(
1−

∞∑
s=n−3

fSn−3(s)r3(d1 − 2, d2 − 1, d3 − 1, s)

)

J2n ≡ d1(d1 − 1)d2d3

∣∣∣∣E [ n2

S2
n−3

]
− 1

[E[D]]2

∣∣∣∣
and limn→∞ J2n = 0 as in (18) and limn→∞ J1n = 0 by E[r3(d1 − 2, d2 − 1, d3 − 1, Sn−3)] ≡∑∞

s=n−3 fSn−3(s)r3(d1 − 2, d2 − 1, d3 − 1, s)→ 1 as n→∞.

B.0.2 Proof of Lemma 1(ii)

To establish Lemma 1(ii) for m = 2, recall that p1(a1, a2, s) in (12) represents the probability that,
under random pairing in the pre-erasure CM, a node A1 with a1 stubs shares at least one edge with
a second node A2 with a2 stubs (where s is the node number of remaining stubs and a1 + a2 + s

is even). If node A1’s stubs are labeled j = 1, . . . , a1 and if p(j)
1 (a1, a2, s) = a2/(s + a1 + a2 − 1)

denotes the probability that stub j of node A1 pairs with some stub from the second node A2, then
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we may bound p1(a1, a2, s) ≤
∑a1

j=1 p
(j)
1 (a1, a2, s) = a1a2/(s+ a1 + a2− 1) for a1, a2 ≥ 0. Using this

with (14) and (15), it then follows that for d1, d2 ≥ 1 and n ≥ 3

nP (NB2,n|d1, d2) ≤ 2d1d2E
(

n

Sn−2

)
≤ Cd1d2

with C = 2 supn≥3 E[(n/Sn−2)] = O(1) since E[n/Sn−2] =
∑∞

s=n−2
n
s fSn−2(s) → 1/E[D] < ∞ (by

the SLLN under E[D] = O(1) as in (20)).

B.0.3 Proof of Lemma 1(iii)

To show Lemma 1(iii) for m = 3, consider first bounding n2P (NB3,n|d1, d2, d3), d2, d3 ≥ d1, with an
argument analogous to the previous one. That is, recalling p2(a1, a2, a3, s) from (13), if node A1’s
stubs are labeled j = 1, . . . , a1 and if p(i,j)

2 (a1, a2, a3, s) = [a2/(s+a1 +a2 +a3−1)][a3/(s+a1 +a2 +
a3 − 3)] denotes the probability that stub i of node A1 wires with some stub from the second node
A2 (having a2 stubs) and stub j wires with some stub from the third node A3 (having a3) stubs,
then we may bound p2(a1, a2, a3, s) ≤

∑a2
i=1

∑a2
j=1,j 6=i p

(i,j)
2 (a1, a2, a3, s) ≤ a1(a1− 1)a2a3/[(s+ a1 +

a2 + a3 − 1)(s+ a1 + a2 + a3 − 3)]. From this and (14) with (16), it follows that for d2, d3 ≥ d1 ≥ 1
and n ≥ 4

n2P (NB3,n|d1, d2, d3) ≤ 2d2
1d2d3E

[
n2

Sn−3

]
≤ C(d1d2d3)4/3 (21)

with C = 2 supn≥3 E[n2/S2
n−3] = O(1) since E[n2/S2

n−3] =
∑∞

s=n−3
n2

s2
fSn−3(s) → 1/[E[D]]2 < ∞

as in (17).
To complete the proof of Lemma 1(iii) for m = 3, we show

n2P (NBD3,n, SLM3,n|d1, d2, d3)
3∏
i=1

fn(di) ≤ C(d1d2d3)4/3
3∏
i=1

f(di) (22)

holds for some C > 0, not depending on d1, d2, d3 ≥ 1 or n ≥ 4. The constant C will be determined
as C = max{H1, H2, H3, H4}, where H1, . . . ,H4 are constants specified by case analysis below.
Note that n2P (NBD3,n, SLM3,n|d1, d2, d3) ≤ n2P (NB3,n|d1, d2, d3) for all d1, d2, d3 ≥ 1, so that for
all n ≥ 4

n2P (NBD3,n,SLM3,n|d1, d2, d3)
3∏
i=1

fn(di) ≤ H1(d1d2d3)4/3
3∏
i=1

f(di)

follows for d2, d3 ≥ d1 by (21) and by fn(d) ≤ f(d) supn≥1C
−1
n , d ≥ 1 from (3), so that H1 does not

depend on n ≥ 4 or d2, d3 ≥ d1. Consider d1, d2, d3 where min{d1, d2, d3} < d1 and, for τ ∈ (0, 1/2)
from (3), pick and fix a large integer M > 1 where τ2M + 2 < M . If d1 −min{d1, d2, d3} ≤ 5M ,
then (21) yields

n2P (NBD3,n, SLM3,n|d1, d2, d3) ≤ n2P (NB3,n|d1, d2, d3) ≤ H2(d1d2d3)4/3

for H2 = (10M)2/32 supn≥3 E[n2/S2
n−3] = O(1) not depending on n ≥ 4 or d1, d2, d3 ≥ 1 with

d1−min{d1, d2, d3} ≤ 5M . Finally, consider the possibility d1−min{d1, d2, d3} > 5M . In this case,
given D1,n = d1, D2,n = d2, D3,n = d3, in order that event NBD3,n in the ECM graph hold (i.e.,
Ds

2,n ≥ Ds
1,n and Ds

3,n ≥ Ds
1,n hold in addition to node 1 being a neighbor of nodes 2 and 3), node

1 needs at least 4M of its d1 > 5M + 1 stubs to be erased (even if the stubs from one node among
nodes 1, 2 or 3 is incremented by 1 when

∑n
i=1Di,n is odd), implying either event NB3,n holds with
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node 1 having at least M self-loops in the pre-erasure CM or event NB3,n holds with node 1 having
at least M multi-edges in the pre-erasure CM. Hence, if d1 −min{d1, d2, d3} > 5M ,

P (NBD3,n,SLM3,n|d1, d2, d3) ≤ P (NB3,n, node 1 has at least M self-loops|d1, d2, d3)
+P (NB3,n, node 1 has at least M multi-edges|d1, d2, d3),

Hence, the proof of (22) will be complete upon establishing that

n2P (NB3,n, node 1 has at least M self-loops|d1, d2, d3)
3∏
i=1

fn(di) (23)

≤ H3(d1d2d3)4/3
3∏
i=1

f(di)

n2P (NB3,n, node 1 has at least M multi-edges|d1, d2, d3)
3∏
i=1

fn(di) (24)

≤ H4(d1d2d3)4/3
3∏
i=1

f(di)

for H3, H4 not depending on n ≥ 4 or d1, d2, d3 ≥ 1 with d1 −min{d1, d2, d3} > 5M .
We consider establishing (23) and, supposing given valuesD1,n = d1, D2,n = d2, D3,n = d3, Sn−3 =

s, we first bound the corresponding conditional probability of the event “NB3,n, node 1 has at least
M self-loops" when n ≥ 4 and d1 − min{d1, d2, d3} > 5M . Accounting for the possibility that a
node among {1, 2, 3} might have its stubs incremented by 1, there are at most (d1 + 1)d1 ways to
pick and fix two stubs of node 1 to wire to one of the (at most) d2 + 1 stubs of node 2 and one of
the (at most) d3 + 1 stubs of node 3, leaving at most P d1−1

2k /[k!2k] ways to pick and fix 2k pairs of
stubs from node 1 to form k self-loops, k = 0, . . . , b(d1− 1)/2c. After designating two stubs of node
1 to wire to a stub of node 2 and a stub of node 3 and designating 2k (fixed k) stubs of node 1 to
form self-loops, the probability that this wiring event actually occurs in the pre-erasure CM is at
most [(d2 + 1)/s][(d3 + 1)/s]s−k (derived from conditioning probabilities). Hence,

n2P (NB3,n, node 1 has at least M self-loops|d1, d2, d3, s)

≤ (d1 + 1)d1
(d2 + 1)

s

(d3 + 1)
s

b(d1−1)/2c∑
k=M

1
k!2k

P d1−1
2k

1
sk

so that, noting P d1−1
2k ≤ d2k

1 , it follows that

n2P (NB3,n, node 1 has at least M self-loops|d1, d2, d3)
3∏
i=1

fn(di)

= n2
∞∑

s=n−3

P (NB3,n, node 1 has at least M self-loops|d1, d2, d3, s)fSn(s)
3∏
i=1

fn(di)

≤ n2

(
3∏
i=1

fn(di)

) ∞∑
s=n−3

(d1 + 1)d1
(d2 + 1)

s

(d3 + 1)
s

fSn(s)
b(d1−1)/2c∑
k=M

1
k!2k

P d1−1
2k

1
sk

≤ 8d4/3
1 d2d3

(
3∏
i=1

fn(di)

) ∞∑
s=n−3

fSn(s)
n2d

2M+2/3
1

sM+2

∞∑
k=0

1
2k
d2k

1

sk
.

19



From this, (23) holds with H3 = max{N2
1 , 1622+M supn≥1C

−3
n } using that fn(d) = 0 for d > L(n)nτ

and that there exists an integer N1 ≥ 6 such that L(n)nτ ≤ n1/2 and [L(n)nτ ]2M+2/3 ≤ nM hold
for n ≥ N1 since L(·) is slowly varying and τ ∈ (0, 1/2), τ2M + 2 < M .

We next consider establishing (24) for n ≥ 4 and d1 −min{d1, d2, d3} > 5M . We require some
additional notation. Suppose 1 < v1 < . . . < vw ⊂ {2, . . . , n} denote the indices of 2 ≤ w ≤M + 2
nodes in a size n (pre-erasure) CM graph where we set v1 = 2, v2 = 3 and let ki, i = 1, . . . , w
denote the number of edges between node 1 and node vi. In order for nodes v1 = 2 and v2 = 3
to be neighbors of node 1 and for node 1 to have at least M multi-edges in a graph with n nodes
under the pre-erasure CM, there must exist some subset {v1, . . . , vw} ⊂ {2, . . . , n} of w nodes with
2 ≤ w ≤ M + 2 for which it holds that k1 ≥ 1, k2 ≥ 1 (to ensure nodes 2 and 3 are neighbors of
1), ki ≥ 2 for i = 3, . . . , w when w > 2 (to ensure nodes 1 and vi have at least one multi-edge) and
−2 +

∑w
i=1 ki ≥M (to ensure at least M multi-edges for node 1 based on the w nodes v1, . . . , vw).

Or expressed in terms of set notation, we have

“NB3,n, node 1 has at least M multi-edges” ⊂
M+2⋃
w=2

⋃
(v1,...,vw)∈Bw

⋃
(k1,...,kw)∈Cw

w⋂
i=1

Evi,ki,n. (25)

where above Ev,k,n denotes the event that node 1 < v ≤ n has exactly k ≥ 1 edges after wiring
in a pre-erasure CM with n nodes and we define index sets B2 = {(2, 3)}, C2 = {(k1, k2) :
integer k1, k2 ≥ 1; k1 + k2 − 2 ≥M } and Bw = {(v1, . . . , vw) : v1 = 2, v2 = 3 < v3 < · · · <
vw ≤ n}, Cw = {(k1, . . . , kw) : integer k1, k2 ≥ 1; k3, . . . , kw ≥ 2;

∑w
i=1 ki − 2 ≥M } for w ≥ 2. To

establish (24) for n ≥ 4 and d1−min{d1, d2, d3} > 5M , we shall use (25) and the fact that there ex-
ists an integer N2 ≥ max{8,M+3} such that 1 ≤ 2[nτL(n)] ≤ (n−4)1/2, [nτL(n)]2M ≤ (n−4)M−2

(since τ2M+2 < M and L(·) is slowly varying) and (n−3)−M [L(n)nτ ] ≥ (n−4) for n ≥ N2. (For
a size n CM graph (assuming f(0) = 0), (n− 3) is the smallest value of

∑n
i=3Di,n while M [L(n)nτ ]

is the largest possible value of
∑n

i=4Di,n under fn(·); that is,
∑n

i=M+3Di,n is large and at least
(n− 4) for n ≥ N2.)

Now fix 2 ≤ w ≤ M + 2, fix (v1, . . . , vw) ∈ Bw and fix (k1, . . . , kw) ∈ Cw (with v1 = 2, v2 = 3).
Then, it holds for any w > 2 that

P

(
w⋂
i=1

Evi,ki,n|D1 = d1, D2 = d3, D3 = d3

)
3∏
i=1

fn(di) (26)

=
L(n)nτ∑
dv3=k3

· · ·
L(n)nτ∑
dvw=kw

fn(d1)
w∏
j=1

fn(dvi)

P

(
w⋂
i=1

Evi,ki,n|D1 = d1, Dv1 = dv1 , . . . , Dvw = dvw

)
.

Then, for n ≥ N2 and w ≥ 2, it follows (using conditioning probabilities with
∑n

i=M+3Di,n ≥
(n−3)−M [L(n)nτ ] ≥ (n−4) and allowing for the possibility that a stub count among d1, dv1 , . . . , dvw
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may be incremented by 1) that

nwP

(
w⋂
i=1

Evi,ki,n|D1 = d1, Dv1 = dv1 , . . . , Dvw = dvw

)fn(d1)
w∏
j=1

fn(dvi)

 (27)

≤ nwfn(d1)
w∏
j=1

4fn(dvj )
(
d1dvj
n− 4

)kj

≤
(

4n
(n− 4)Cn

)wf(d1)
w∏
j=1

f(dvj )

 d
4/3
1

 w∏
j=1

dvj

4/3

[nτL(n)]−4/3(w−1)+2
Pw
j=1 kj−k∗1−k∗2

(n− 4)−w+
Pw
j=1 ki

≤ H̃4

f(d1)
w∏
j=1

f(dvj )

 d
4/3
1

 w∏
j=1

dvj

4/3(
1
2

)Pw
j=1 kj−2M

, H̃4 ≡ (8/Cn)M+2,

where above we use k∗i = min{ki, 4/3} for i = 1, 2; n/(n− 4) ≤ 2 for n ≥ N2; and

[nτL(n)]−4/3(w−1)+2
Pw
j=1 kj−k∗1−k∗2

(n− 4)−w+
Pw
j=1 ki

≤


(

nτL(n)

(n−4)1/2

)2
Pw
j=1 kj−2w

w ≥ 3

[nτL(n)]2M

(n−4)M−2

(
nτL(n)

(n−4)1/2

)2
Pw
j=1 kj−2M

w = 2

≤
(

1
2

)Pw
j=1 kj−2M

by 1 ≤ 2[nτL(n)] ≤ (n− 4)1/2 and [nτL(n)]2M ≤ (n− 4)M−2 for n ≥ N2 along with −4(m− 1)/3−
k1 ∗ −k∗2 ≤ −2w for w ≥ 3. Hence, by (26)-(27), we have

nwP

(
w⋂
i=1

Evi,ki,n|D1 = d1, D2 = d3, D3 = d3

)
3∏
i=1

fn(di)

≤


H̃4

(∏3
i=1 d

4/3
i f(di)

) (
1
2

)Pw
j=1 kj−2M

w = 2∑∞
dv3=0 · · ·

∑∞
dvw=0 H̃4

(
f(d1)

∏w
j=1 f(dvj )

)
d

4/3
1

(∏w
j=1 dvj

)4/3 (
1
2

)Pw
j=1 kj−2M

w = 3

= H̃4[E[D4/3]]w−2(d1d2d3)4/3
3∏
i=1

f(di)
(

1
2

)Pw
j=1 kj−2M

(28)

for n ≥ N2 and any fixed 2 ≤ w ≤M +2, (v1, . . . , vw) ∈ Bw (k1, . . . , kw) ∈ Cw (with v1 = 2, v2 = 3).
Then, by (25) and (28), we have for d1, d2, d3 ≥ 1 with d1 −min{d1, d2, d3} > 5M and n ≥ N2,

n2P (NB3,n, node 1 has 1 has at least M multi-edges|d1, d2, d3)
3∏
i=1

fn(di)

≤
M+2∑
w=2

1
nw−2

∑
(v1,...,vw)∈Bw

∑
(k1,...,kw)∈Cw

nwP (
w⋂
i=1

Evi,ki,n|D1 = d1, D2 = d3, D3 = d3)

≤ H̃4(d1d2d3)4/3
3∏
i=1

f(di)
M+2∑
w=2

[E[D]]w−2 |Bw|
nw−2

∞∑
k1=0

· · ·
∞∑

kw=0

(
1
2

)Pw
j=1 kj−2M

≤ H̃423M+2[E[D]]M (d1d2d3)4/3
3∏
i=1

f(di),
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using |Bw| ≤ nw−2 to bound the cardinality of Bw. Now (24) follows withH4 = max{N2
2 , H̃423M+2[E[D]]M}

not depending on n ≥ 4 or d1, d2, d3 ≥ 1 with d1 −min{d1, d2, d3} > 5M . The proof of Lemma 1 is
finished, under the assumption that f(0) = 0 in (1).

B.0.4 Modified proof of Lemma 1

The previous proof of Lemma 1 assumed f(0) = 0, and here we provide a modification that shows
that Lemma 1 still holds in the case that 0 < f(0) < 1 (since E[D] > 0 by assumption, f(0) < 1
must hold). To see this, recall Sn−m =

∑n
i=m+1Di,n for m = 2, 3 and define an−m ≡ 2−1E[D1,n] =

2−1
∑nτL(n)

d=0 d · fn(d) for n > m. Note that E[Sn−m] = 2an−m(n−m) and there exists some ε > 0
such that an−m > ε for n > m. Now pick a large integer K such that τ2K + 2 < K (possible
since τ ∈ (0, 1/2)). By Markov’s inequality and the fact that D1,n, . . . , Dn,n are independent and
identically distributed and bounded by nτL(n), it holds for m = 2 or 3 that

nm−1P (Sn−m ≤ an−m(n−m)) ≤ nm−1P
(
|Sn−m − E[Sn−m]|2K ≥ [an−m(n−m)]2K

)
≤ n2

[an−m(n−m)]2K
E
[
|Sn−m − ESn−m|2K

]
≤ Cn2

ε2K(n−m)2K
(n−m)KE[D1,n]2K

≤ C

ε2K
n2Kτ+2−K [L(n)]2K

for a constant C > 0 not depending on n ≥ 4. Note that limn→∞ n
2Kτ+2−K [L(n)]2K = 0 (since

2Kτ + 2−K < 0 and L(·) is slowly varying) so that

lim
n→∞

nm−1P (Sn−m ≤ an−m(n−m)) = 0 (29)

for m = 2, 3.
In the proof of Lemma 1 from Section B which assumed f(0) = 0, the sum Sn−m/(n−m) ≥ 1

(for m = 2, 3) was bounded away from zero (implying that Sn−m diverged to ∞ necessarily
as n → ∞), which was a key component in that proof. Now the imposed additional event
Sn−m/(n − m) ≥ an−m ≥ ε in (30) forces the sum Sn−m to grow as n → ∞, so at the very
least Sn−m must be greater than nε. For m = 2 or 3, all of the bounds and limits for con-
ditional probabilities nm−1P (NBm,n,SLMm,n|d1, . . . , dm), nm−1P (NBm,n,SLMc

m,n|d1, . . . , dm) and
nm−1P (NBm,n|d1, . . . , dm) stated in Lemma 1 can be established for analogous quantities

nm−1P (NBm,n,SLMm,n, Sn−m ≥ an−m(n−m)|d1, . . . , dm),
nm−1P (NBm,n,SLMc

m,n, Sn−m ≥ an−m(n−m)|d1, . . . , dm),
nm−1P (NBm,n, Sn−m ≥ an−m(n−m)|d1, . . . , dm).

(30)

To show Lemma 1 holds for quantities in (30), the only serious modifications to the previous proof
of Lemma 1 occur in steps (17) and (18), where now we require

lim
n→∞

E

[
nm−1

Sm−1
n−m

I [Sn−m ≥ an−m(n−m)]

]
≡ lim

n→∞

∑
s≥an−m(n−m)

nm−1

sm−1
fSn−m(s) =

1
[E[D]]m−1

form = 2, 3 (using an indicator function I(·) above) rather than limn→∞ E[nm−1/Sm−1
n−m] = limn→∞

∑∞
s=n−m

nm−1

sm−1 fSn−m(s) =
1/[E[D]]m−1 in (17) and (18). To establish these alternative limits for m = 2, 3, note that the proof
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of (17) showed that there exist random variables Yn having the same distribution as Sn−2/n for
which Yn → E[D] w.p.1 as n → ∞. Since an ≤ (1 − ε)E[D], it holds that limn→∞ Yn = E[D] ≥
(1− ε)E[D] ≥ lim supn→∞ an w.p.1 implying I[Y ≤ an−2(n− 2)/n]→ 1 w.p.1 as n→∞ as well as
Zn ≡ 1/YnI[Y ≥ an−2(n− 2)/n]→ 1/E[D]. Since Zn ≤ n/[(n− 2)an−2] ≤ 2/ε w.p.1 for all n ≥ 1,
the LDCT gives for m = 2

lim
n→∞

E
[

n

Sn−2
I [Sn−2 ≥ an−2(n− 2)]

]
= lim

n→∞
E[Zn] =

1
E[D]

.

Similarly, for m = 3,

lim
n→∞

E
[
n2

Sn−3
I [Sn−3 ≥ an−3(n− 3)]

]
= lim

n→∞
E[Z2

n] =
1

[E[D]]2
.

Finally, if Lemma 1 holds for the quantities in (30), then Lemma 1 will also hold for the con-
ditional probabilities nm−1P (NBm,n,SLMm,n|d1, . . . , dm), nm−1P (NBm,n,SLMc

m,n|d1, . . . , dm) and
nm−1P (NBm,n|d1, . . . , dm) in the case 0 < f(0) < 1 under (29) because

nm−1P (Am,n, Sn−m ≥ an−m(n−m)|d1, . . . , dm)
≤ nm−1P (Am,n|d1, . . . , dm)
≤ nm−1P (Am,n, Sn−m ≥ an−m(n−m)|d1, . . . , dm) + nm−1P (Sn−m ≤ an−m(n−m)|d1, . . . , dm)

where the generic event Am,n above could be taken as “NBm,n,SLMm,n," “NBm,n, SLMc
m,n," or

“NBm,n" with m = 2, 3. By (29), nm−1P (Am,n|d1, . . . , dm) will have the same limits in Lemma 1
which hold for nm−1P (Am,n, Sn−m ≥ an−m(n−m)|d1, . . . , dm) for Am,n taken as “NBm,n,SLMc

m,n"
or “NBm,n" with m = 2, 3. Additionally, by (29), nm−1P (Am,n|d1, . . . , dm) can be bounded by
the same quantities given in Lemma 1. (Consider, for illustration, m = 3 and A3,n = NB3,n and
suppose the bound n2P (NB3,n, Sn−3 ≥ an−3(n − 3)|d1, d2, d3) ≤ C(d1d2d3)4/3 of Lemma 1 applies
for some C > 0 independent of n ≥ 4 and d2, d3 ≥ d1 ≥ 0. By (29), there exists some N ≥ 4 such
that n2P (Sn−3 ≥ an−3(n− 3)) ≤ C so that n2P (NB3,n|d1, d2, d3) ≤ max{2C,N2}(d1d2d3)4/3 holds
for all n ≥ 4 and d2, d3 ≥ d1 ≥ 0; note n2P (NB3,n|d1, d2, d3) = 0 trivially if d1 = 0.) 2

B.0.5 Proof of Lemma 2.

Fix values a1, a2, a3. To evaluate the limits in Lemma 2, we use Stirling’s approximation for log(s!)
as integer s→∞ given by

log(s!) =
log(
√

2π)
2

+ s log s− s+
1

12s
+O

( 1
s3

)
.

With this and assuming a1 + a2 + s is even, we may expand the permutation functions defining
h(a1, a2, s, k) in p1(a1, a2, s) from (12) to find

h(a1, a2, s, k) =
a1! ek

(a1 − 2k)!k!2k
1
sk

(
1− (a1 − 2k)

s

)−(s−(a1−2k)−1/2(
1 +

a1 + a2

s

)−(s+a1+a2)/2

×
(

1 +
a2 − (a1 − 2k)

s

)(s+a2−(a1−2k))/2
exp

(
4k − 3a1

12s2
+ a1a2O

(
s−3
))

,
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where 0 ≤ k ≤ a1/2 is an integer. From this, we obtain the following expansions of h(a1, a2, s, k) as
s→∞ (again assuming even a1 + a2 + s) as a function of k ≤ a1/2:

h(a1, a2, s, k) = O
( 1
sk

)
k ≥ 0;

h(a1, a2, s, 2) =
a1(a1 − 1)(a1 − 2)(a1 − 3)

8s2
+O

( 1
s3

)
;

h(a1, a2, s, 1) =
a1(a1 − 1)

2s
exp

[
(a2 + 1)(1− a1)

s
− 1

2
(a1 − 2)(a1 − 3)

s
+O

( 1
s2

)]
;

h(a1, a2, s, 0) = exp

[
− a1(a1 − 1)

2s
− a1a2

s
+

1
s2

[a2
2a1

2
+
a1(a1 − 1)

4

]
+O

( 1
s3

)]
.

Now recalling s∗ = s if a1 +a2 + s is even and s∗ = s+ 1 if a1 +a2 + s is odd, the above expressions
show

lim
s→∞

sp1(a1, a2, s
∗) = lim

s→∞
s∗p1(a1, a2, s

∗)

= lim
s→∞

s∗

(
1−

[
h(a1, a2, s

∗, 0) + h(a1, a2, s
∗, 1) +O

( 1
s2

)])

= lim
s→∞

(
a1a2 +O

(1
s

))
= a1a2,

establishing Lemma 2(i).
To show Lemma 2(ii), we similarly have

p1(a1, a2, s
∗) = 1−

[
h(a1, a2, s

∗, 0) + h(a1, a2, s
∗, 1) + h(a1, a2, s

∗, 2) +O
( 1
s3

)]

=
a1a2

s∗
− 1

(s∗)2

[
a2

2(a2
1 + a1)
2

+
a2a1(a1 − 1)

2

]
+O

( 1
s3

)
,

which yields the following decomposition as s→∞:

p2(a1, a2, a3, s
∗) =

(
p1(a1, a2, s

∗ + a3)− a1a2

s∗

)
+
(
p1(a1, a3, s

∗ + a2)− a1a3

s

)
−p1(a1, a2 + a3, s

∗) +
a1(a2 + a3)

s∗

=
a1(a1 − 1)a2a3

(s∗)2
+O

( 1
s3

)
.

Now
lim
s→∞

s2p2(a1, a2, a3, s
∗) = lim

s→∞
(s∗)2p2(a1, a2, a3, s

∗) = a1(a1 − 1)a2a3

follows, establishing Lemma 2(ii). 2
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